
Report on Serendip 
URL: http://vep.cs.wisc.edu/serendip/ 

Requirements: Python, Mallet 

Introduction 
Serendip provides rich visualization capabilities for topic models, along with methods of sorting, 
filtering, and annotating topic model data. Serendip is unusual in providing three metrics for ranking 
relationships between topics and documents: 

• Frequency (the percentage of a given topic accounted for each word) -- biased towards words 
appearing in many topics 

• Information Gain (the information words gain towards identifying a given topic) -- biased 
towards rare words that best distinguish topics 

• Saliency (frequency multiplied by information gain) -- finds salient words across an entire model, 
not just within a topic 

Saliency is the default ranking metric. 

Technology Overview 
Serendip runs in a Python-Flask environment. It comes with a separate command-line tool to call Mallet 
and generate topic models. The Mallet output data is deposited in a Corpora folder and can then be 
accessed by the Serendip interface. In addition to implementing Mallet, the command-line tool 
generates multiple files used by the interface to navigate and manipulate the data. Therefore, Serendip 
will not work if independently generated Mallet output files are deposited in the Corpora folder. It is 
possible that the script could be modified to read independently generated Mallet data, but this would 
require some hacking of the Python script. 

Serendip is very difficult to install. If one’s Python environment is Anaconda, following the website’s 
instructions places Serendip in the Anaconda/Lib/site-packages/VEP_Core-1.01-py2.7.egg 
folder. It is also necessary to install the raven module (pip install raven). Although it is possible to 
provide the command-line tool with a path to input data, I found that it did not work unless I placed my 
data in the Corpora folder. This is inconvenient because it had to be moved to that deeply embedded 
path inside the Anaconda folder. The tool did read my stop words file from my WE1S-workspace 
location. However, I had to hack the script in order to give it an acceptable path to call Mallet. I also had 
to download gzip.exe for Windows and hack the script to give it the path to that application. 

After these modifications, the main Serendip screen works, but the Text Viewer does not because one of 
its functions calls the wrong Flask route. Flask’s suggested correction works, but sever other Serendip 

http://vep.cs.wisc.edu/serendip/


functions seem not to generate output, and this may be the result of further code bugs which I have not 
yet identified. 

For my experimental topic model (25 topics and 3312 documents), the command-line tool took 30 
minutes to generate the topic model and associated files for this corpus. The Mallet run took five 
minutes, and the rest of the time consisted of “tagging texts”. Because the Serendip interface runs in the 
browser, it is subject to certain limitations. In my experiments using a model, many functions that 
needed a screen re-draw caused the browser to hang for approximately 5-15 seconds. Hence, exploring 
a topic model is not always a quick process. 

Because of the small, but for some challenging, difficulties in setting up Serendip, it might be ideal to 
install it on some lab computers. A Python script with a separate config file might allow users to 
generate new topic models and place the output in the right locations, without the user’s having to 
enter confusing command-line arguments. 

Screen Shots 
The following screen shots illustrate the major functions of Serendip. All screen shots show the same 25-
topic model of The Guardian, The LA Times, and The New York Times from 2013-2014, using the query 
terms “arts”, “humanities”, and “liberal_arts”. Since the was a separate run from my earlier 25-topic 
model, done without random seed and with a more updated stop words list, the topics differ somewhat 
from the earlier model. However, I have labeled topics as closely as I dared to those of the earlier model 
so that the two can be roughly compared. 

Overview of the Serendip Workspace 

 

 



Close-Up of Model Viewer 
Topics are sorted by similarity to average results of the Books_Writing_Authors topic. 

 



Showing Just the LA Times 

 

 



Showing Aggregated Data for LA Times in Chunks of 100 Documents 

 



Term Distribution for Books_Writing_Authors 

 

Metadata for Books_Writing_Authors 

 



TextViewer Overview (Showing Guardian-2014-a-986.txt) 

 

Vocabulary from Books_Writing_Authors and Digital and Information 
Technology Topics 

 



Rank Viewer (Showing word frequency rank per topic in Guardian-2014-a-
986.txt) 

 



Ranking Options 

 



Word Rankings for the Entire Corpus 

 


	Introduction
	Technology Overview
	Screen Shots
	Overview of the Serendip Workspace
	Close-Up of Model Viewer
	Showing Just the LA Times
	Showing Aggregated Data for LA Times in Chunks of 100 Documents
	Term Distribution for Books_Writing_Authors
	Metadata for Books_Writing_Authors
	TextViewer Overview (Showing Guardian-2014-a-986.txt)
	Vocabulary from Books_Writing_Authors and Digital and Information Technology Topics
	Rank Viewer (Showing word frequency rank per topic in Guardian-2014-a-986.txt)
	Ranking Options
	Word Rankings for the Entire Corpus


