Topics for Discussion:

1. Stop words and Consolidation

Should we convert contractions to uncontracted bigrams? Should we convert them to underscored bigrams? Or will most contractions be made up of stop words anyway?

2. Topic Numbers

The more topics you have in your model, the greater the likelihood that individual topics will derive from a single or a small group of articles focused on a specific name, place, or event. If a word like "Wellesley" is prominent in a Women and Gender topic, is this topic really about Women and Gender or about a specific event or issue related to specific entities.

If we measure the similarity between apparently similar topics from different sized models, is this a good way to determine whether we are really looking at the same topic?

3. Effect of Corpus

The query terms "humanities", "arts", and "liberal arts" produced the following numbers of deduplicated documents:

	2013	2014
The Guardian	1326	1257
Los Angeles Times	76	62
New York Times	291	302

This means the most prominent topics in the corpus likely gain their prominence because of one publication (in this case, *The Guardian*) or potentially a given time frame (for a model containing documents from a range of years). The distribution of topic prominence across the corpus looks something like the graph below. Labels along the y-axis overlap so tightly that they are useless, so a few labels are used to mark approximate transitions between years and publications. In many ways, it is the least specific topics that are evenly distributed in an uneven corpus.

